Particle lifetime in cylindrical cavity with absorbing spot on the wall: Going beyond the narrow escape problem.

نویسندگان

  • Leonardo Dagdug
  • Alexander M Berezhkovskii
  • Sergey M Bezrukov
چکیده

The mean lifetime of a particle diffusing in a cylindrical cavity with a circular absorbing spot on the cavity wall is studied analytically as a function of the spot radius, its location on the wall, the particle initial position, and the cavity shape determined by its length and radius. When the spot radius tends to zero our formulas for the mean lifetime reduce to the result given by the solution of the narrow escape problem, according to which the mean lifetime is proportional to the ratio of the cavity volume to the spot radius and is independent of the cavity shape, the spot location on the cavity wall, and the particle starting point, assuming that this point is not too close to the spot. When the spot radius is not small enough, the asymptotic narrow escape formula for the mean lifetime fails, and one should use more general formulas derived in the present study. To check the accuracy and to establish the range of applicability of the formulas, we compare our theoretical predictions with the results of Brownian dynamics simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-Consistent hot spot tracing particles by kinetic simulations: With the emphasis on Cusp particle entry

One of the most important advantages of particle simulation as compared to fluid simulation is the capacity for working with and tracing particles. In particle simulations, the test particle method is usually used to get some idea of the behavior of plasma or other substances. In this method, first, a small number of particles are injected into the frame of static electromagnetic fields. Then, ...

متن کامل

Natural Convection at Different Prandtl Numbers in Rectangular Cavities with a Fin on the Cold Wall

The natural convection in differentially heated rectangular cavities with a fin attached to the cold wall was investigated numerically. The top and the bottom horizontal walls of the cavities were insulated while their left and the right vertical walls were maintained at a constant temperature Th and Tc, respectively with Th > Tc. The governing equations written in terms of the primitive variab...

متن کامل

Effect of Insulated Up and Down Lid Motion on the Heat Transfer of a Lid-Driven Cavity with an attached fin

This study investigates the effect of lid motion on the optimal characteristics a thin rectangular fin attached on the hot wall of a square lid-driven cavity with active vertical walls. The optimal fin position is studied for Richardson numbers of 0.1-10. The effect of mounting a rectangular fin with a thermal conductivity of 1 and 1000 on minimization and maximization of heat transfer through ...

متن کامل

D ec 2 00 4 NARROW ESCAPE , part III : Riemann surfaces and non - smooth domains

We consider Brownian motion in a bounded domain Ω on a twodimensional Riemannian manifold (Σ, g). We assume that the boundary ∂Ω is smooth and reflects the trajectories, except for a small absorbing arc ∂Ωa ⊂ ∂Ω. As ∂Ωa is shrunk to zero the expected time to absorption in ∂Ωa becomes infinite. The narrow escape problem consists in constructing an asymptotic expansion of the expected lifetime, d...

متن کامل

The Narrow Escape Problem in a Flat Cylindrical Microdomain with Application to Diffusion in the Synaptic Cleft

The mean first passage time (MFPT) for a Brownian particle to reach a small target in cellular microdomains is a key parameter for chemical activation. Although asymptotic estimations of the MFPT are available for various geometries, these formula cannot be applied to degenerated structures where one dimension of is much smaller compared to the others. Here we study the narrow escape time (NET)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 137 23  شماره 

صفحات  -

تاریخ انتشار 2012